Evaluation of aerobic biodegradation of ethylene dibromide in contaminated soil by indigenous bacteria and bioaugmentation

danko@deb.uminho.pt

Ethylene dibromide (1,2-dibromoethane or EDB) is a highly toxic halogenated organic compound that was primarily used as an antiknock gasoline additive and as a soil fumigant. Recent studies showed that the presence of EDB in aquifers has become a major concern. The objective of this study was to evaluate the aerobic biodegradation of EDB by indigenous bacteria and bioaugmentation of a pure culture to support biodegradation. Aerobic microcosms were established using approximately 15 g of soil from an EDB contaminated site and 40 mL of synthetic groundwater as groundwater from the site was unavailable. The initial concentration of EDB was approximately 2.5 mg/L. Autoclaved and water controls were also prepared to determine abiotic losses. After 90 days of incubation, no significant losses were observed in live bottles when compared to controls. A culture capable of growth on EDB (Mycobacterium strain GP1) was then evaluated for its ability to stimulate biodegradation of EDB. Strain GP1 was added to microcosms at a concentration of 5 % v/v. Degradation of EDB started within one day while complete consumption was observed within approximately three days after bioaugmentation. There was no significant degradation of EDB in microcosms that did not receive the culture. These results suggest that the soil samples did not contain organisms that can degrade EDB. Bioaugmentation can be an effective strategy to remediate sites where degradation of EDB does not occur.

Bioreactor treatment of aromatic amines under denitrifying conditions

Pereira, R., Alves, M.M. and Van der Zee, F.P., Departamento de Engenharia Biológica, Universidade do Minho, Braga
frankvdz@deb.uminho.pt

A logical concept for the removal of azo dyes in biological wastewater treatment systems is based on anaerobic treatment, for the reductive cleavage of the azo linkages, in combination with aerobic treatment, for the degradation of the products from azo dyes cleavage, aromatic amines (Van der Zee & Villaverde, 2005). A drawback of aerobic treatment is that many aromatic amines from azo dye cleavage are prone to autoxidation, which mostly increases the size of the molecules, thereby reducing their biodegradability. Alternatively, denitrifying conditions present a situation where powerful electron acceptors are present whereas autoxidation does not occur. With the objective to investigate the fate of aromatic amines under denitrifying conditions, two upflow anoxic bioreactors were operated. The reactors were fed with synthetic wastewaters containing aniline and/or sulfanilic acid and a mixture of volatile fatty acids as the primary electron donors. The terminal electron acceptors were stoichiometric amounts of nitrate (reactor 1) and a mixture of nitrate and nitrite (reactor 2). Supporting batch denitrification experiments were conducted to monitor toxicity and ultimate biodegradability. The results demonstrated anoxic biodegradation of aniline and a chemical reaction between the aromatic amines and nitrite. Although some of the products of the nitrite reaction were found biodegradable, the nitrite reaction was also observed to cause inhibition of the denitrification activity.